Sensor Cloud based multi-robot collision avoidance control
Local collision avoidance is one of the most important aspect in robot navigation. The task of local collision avoidance is to dynamically compute the optimal collision free velocity for a robot, which is based on the observation of the environment. Unlike motion and path planning that have static knowledge of the global environment and make one-time plan, local collision avoidance needs to respond to the dynamics of the environment such as other active entities or obstacles that are not reflected in the static map.
Current local collision avoidance methods are mainly based on the Velocity Obstacle theory[1]. Of these methods the ORCA(Optimal Reciprocal Collision Avoidance)[2] is a well developed one, but dose not take many practical problems into account. To improve the method in real robotic environment, several other approaches, which consider the kinetic characteristics of robot, localization uncertainty and so on, are brought forward. As the method becomes more and more complicated, computation cost increases a lot, especially in a complex environment that contains large number of dynamic and active entities. Without sufficient computation resources, local collision avoidance can fail due to computational delay, resulting in robot collision. To solve this issue, we developed an IOT Cloud based multi-robot collision avoidance method. This method implements the COCALU(Convex outline collision avoidance under localization uncertainty)[3] algorithm. The algorithm runs in the IOT Cloud and uses IOT Sensors to transmit data and command between the robot and the IOT Cloud.
Overall design of the Application: To develop the collision avoidance application that can be deployed in the IOT Cloud, two main components need to be designed. One is the Sensor Module which relays messages between the robot and message broker and the other one is the topology that actually runs the algorithm.
Data from robot are published by ROS(Robot Operation System) topics. To feed data into the Collision Avoidance Topology, all ROS messages have to be transformed into Java objects that can be processed by the message broker. This transformation is carried out by a ROSJava Node which is a ROS node implemented in Java. This node subscribes all topics needed by the collision avoidance algorithm and each message listener of these subscribers will call corresponding message transformation function to transform the ROS messages into Java objects. After that message sender defined in Sensor module will be called to publish the message to correct IOT Cloud Channel. These Channels are defined according to the topology and message broker. For Collision Avoidance Topology, three types of information are required from the robot: odometry, pose array and laser scan. As several robots can use the same topology to run collision avoidance algorithm, messages from robot are grouped according to their types. The Collision Avoidance topology running in the storm will execute the COCALU algorithm and send back the velocity command through message broker and ROSJava Node to the robot.
Main benefit: Using IOT cloud as Collision Avoidance control platform, computation resources can be scaled easily and rapidly to satisfy dynamic robot controlling requirement, especially in complex environment. And also, for large scale swarm robotics, topology in the storm can propagate according to the number of the robots.
Things to improve in the future: Parallelizing Collision Avoidance algorithm is hard and can be inefficient, since most part of the algorithm is serial. However parallelism can be implemented in topology level. With proper design of the controlling workflow, one topology can process data from several robots by increasing parallel instances of its components. Unfortunately, some of the bolts in the topology need to cache the state of the robot, therefore stream source and destination are bolt instance dependent. This makes the grouping of instances between connected bolts very difficult. To fully utilize the parallelism mechanism, further investigation is required.
[1] Jur van den Berg, Stephen J. Guy, Ming Lin, etc. Reciprocal n-Body Collision Avoidance[J]. Robotics Research: The 14th International Symposium ISRR, Springer Tracts in Advanced Robotics, vol. 70, Springer-Verlag, May 2011, pp. 3-19.
[2] Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles[J]. The International Journal of Robotics Research, 1998, 17(7): 760-772.
[3] Hennes D, Claes D, Meeussen W, et al. Multi-robot collision avoidance with localization uncertainty[C]. Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, Volume 1, 2012:147-154.
